The Top 3 Science Experiments of All Time
- Get link
- X
- Other Apps
The Top 10 Science experiments of all time.
The Top 3 Science Experiments of All Time
Every day, we conduct science experiments, posing an “if” with a “then” and seeing what shakes out. Maybe it’s just taking a slightly different route on our commute home or heating that burrito for a few seconds longer in the microwave. Or it could be trying one more variation of that gene, or wondering what kind of code would best fit a given problem. Ultimately, this striving, questioning spirit is at the root of our ability to discover anything at all. A willingness to experiment has helped us delve deeper into the nature of reality through the pursuit we call science.
A select batch of these science experiments has stood the test of time in showcasing our species at its inquiring, intelligent best. Whether elegant or crude, and often with a touch of serendipity, these singular efforts have delivered insights that changed our view of ourselves or the universe.
Here are nine such successful endeavors — plus a glorious failure — that could be hailed as the top science experiments of all time.
Eratosthenes Measures the World.
Experimental result: The first recorded measurement of Earth’s circumference
When: end of the third century B.C.
Just how big is our world? Of the many answers from ancient cultures, a stunningly accurate value calculated by Eratosthenes has echoed down the ages. Born around 276 B.C. in Cyrene, a Greek settlement on the coast of modern-day Libya, Eratosthenes became a voracious scholar — a trait that brought him both critics and admirers. The haters nicknamed him Beta, after the second letter of the Greek alphabet. University of Puget Sound physics professor James Evans explains the Classical-style burn: “Eratosthenes moved so often from one field to another that his contemporaries thought of him as only second-best in each of them.” Those who instead celebrated the multitalented Eratosthenes dubbed him Pentathlos, after the five-event athletic competition.
That mental dexterity landed the scholar a gig as chief librarian at the famous library in Alexandria, Egypt. It was there that he conducted his famous experiment. He had heard of a well in Syene, a Nile River city to the south (modern-day Aswan), where the noon sun shone straight down, casting no shadows, on the date of the Northern Hemisphere’s summer solstice. Intrigued, Eratosthenes measured the shadow cast by a vertical stick in Alexandria on this same day and time. He determined the angle of the sun’s light there to be 7.2 degrees, or 1/50th of a circle’s 360 degrees.
Knowing — as many educated Greeks did — Earth was spherical, Eratosthenes fathomed that if he knew the distance between the two cities, he could multiply that figure by 50 and gauge Earth’s curvature, and hence its total circumference. Supplied with that information, Eratosthenes deduced Earth’s circumference as 250,000 stades, a Hellenistic unit of length equaling roughly 600 feet. The span equates to about 28,500 miles, well within the ballpark of the correct figure of 24,900 miles.
William Harvey Takes the Pulse of Nature.
Experimental result: The discovery of blood circulation
When: Theory published in 1628
Boy, was Galen wrong.
The Greek physician-cum-philosopher proposed a model of blood flow in the second century that, despite being full of whoppers, prevailed for nearly 1,500 years. Among its claims: The liver constantly makes new blood from food we eat; blood flows throughout the body in two separate streams, one infused (via the lungs) with “vital spirits” from air; and the blood that tissues soak up IBSUBS
The Top 10 Science Experiments of All Time
These seminal experiments changed our understanding of the universe and ourselves.
Newsletter
Sign up for our email newsletter for the latest science news
Every day, we conduct science experiments, posing an “if” with a “then” and seeing what shakes out. Maybe it’s just taking a slightly different route on our commute home or heating that burrito for a few seconds longer in the microwave. Or it could be trying one more variation of that gene, or wondering what kind of code would best fit a given problem. Ultimately, this striving, questioning spirit is at the root of our ability to discover anything at all. A willingness to experiment has helped us delve deeper into the nature of reality through the pursuit we call science.
A select batch of these science experiments has stood the test of time in showcasing our species at its inquiring, intelligent best. Whether elegant or crude, and often with a touch of serendipity, these singular efforts have delivered insights that changed our view of ourselves or the universe.
Here are nine such successful endeavors — plus a glorious failure — that could be hailed as the top science experiments of all time.
Eratosthenes Measures the World
Experimental result: The first recorded measurement of Earth’s circumference
When: end of the third century B.C.
Just how big is our world? Of the many answers from ancient cultures, a stunningly accurate value calculated by Eratosthenes has echoed down the ages. Born around 276 B.C. in Cyrene, a Greek settlement on the coast of modern-day Libya, Eratosthenes became a voracious scholar — a trait that brought him both critics and admirers. The haters nicknamed him Beta, after the second letter of the Greek alphabet. University of Puget Sound physics professor James Evans explains the Classical-style burn: “Eratosthenes moved so often from one field to another that his contemporaries thought of him as only second-best in each of them.” Those who instead celebrated the multitalented Eratosthenes dubbed him Pentathlos, after the five-event athletic competition.
That mental dexterity landed the scholar a gig as chief librarian at the famous library in Alexandria, Egypt. It was there that he conducted his famous experiment. He had heard of a well in Syene, a Nile River city to the south (modern-day Aswan), where the noon sun shone straight down, casting no shadows, on the date of the Northern Hemisphere’s summer solstice. Intrigued, Eratosthenes measured the shadow cast by a vertical stick in Alexandria on this same day and time. He determined the angle of the sun’s light there to be 7.2 degrees, or 1/50th of a circle’s 360 degrees.
Knowing — as many educated Greeks did — Earth was spherical, Eratosthenes fathomed that if he knew the distance between the two cities, he could multiply that figure by 50 and gauge Earth’s curvature, and hence its total circumference. Supplied with that information, Eratosthenes deduced Earth’s circumference as 250,000 stades, a Hellenistic unit of length equaling roughly 600 feet. The span equates to about 28,500 miles, well within the ballpark of the correct figure of 24,900 miles.
Eratosthenes’ motive for getting Earth’s size right was his keenness for geography, a field whose name he coined. Fittingly, modernity has bestowed upon him one more nickname: father of geography. Not bad for a guy once dismissed as second-rate.
William Harvey Takes the Pulse of Nature
Experimental result: The discovery of blood circulation
When: Theory published in 1628
Boy, was Galen wrong.
The Greek physician-cum-philosopher proposed a model of blood flow in the second century that, despite being full of whoppers, prevailed for nearly 1,500 years. Among its claims: The liver constantly makes new blood from food we eat; blood flows throughout the body in two separate streams, one infused (via the lungs) with “vital spirits” from air; and the blood that tissues soak up never returns to the heart.
Overturning all this dogma took a series of often gruesome experiments.
High-born in England in 1578, William Harvey rose to become royal physician to King James I, affording him the time and means to pursue his greatest interest: anatomy. He first hacked away (literally, in some cases) at the Galenic model by exsanguinating — draining the blood from — test critters, including sheep and pigs. Harvey realized that if Galen were right, an impossible volume of blood, exceeding the animals’ size, would have to pump through the heart every hour.
To drive this point home, Harvey sliced open live animals in public, demonstrating their puny blood supplies. He also constricted blood flow into a snake’s exposed heart by finger-pinching a main vein. The heart shrunk and paled; when pierced, it poured forth little blood. By contrast, choking off the main exiting artery swelled the heart. Through studies of the slow heart beats of reptiles and animals near death, he discerned the heart’s contractions, and deduced that it pumped blood through the body in a circuit.
According to Andrew Gregory, a professor of history and philosophy of science at University College London, this was no easy deduction on Harvey’s part. “If you look at a heart beating normally in its normal surroundings, it is very difficult to work out what is actually happening,” he says.
Experiments with willing people, which involved temporarily blocking blood flow in and out of limbs, further bore out Harvey’s revolutionary conception of blood circulation. He published the full theory in a 1628 book, De Motu Cordis [The Motion of the Heart]. His evidence-based approach transformed medical science, and he’s recognized today as the father of modern medicine and physiology.
Gregor Mendel Cultivates Genetics.
Experimental result: The fundamental rules of genetic inheritance
When: 1855-1863
A child, to varying degrees, resembles a parent, whether it’s a passing resemblance or a full-blown mini-me. Why?
The profound mystery behind the inheritance of physical traits began to unravel a century and a half ago, thanks to Gregor Mendel. Born in 1822 in what is now the Czech Republic, Mendel showed a knack for the physical sciences, though his farming family had little money for formal education. Following the advice of a professor, he joined the Augustinian order, a monastic group that emphasized research and learning, in 1843.
Ensconced at a monastery in Brno, the shy Gregor quickly began spending time in the garden. Fuchsias in particular grabbed his attention, their daintiness hinting at an underlying grand design. “The fuchsias probably gave him the idea for the famous experiments,” says Sander Gliboff, who researches the history of biology at Indiana University Bloomington. “He had been crossing different varieties, trying to get new colors or combinations of colors, and he got repeatable results that suggested some law of heredity at work.”
These laws became clear with his cultivation of pea plants. Using paintbrushes, Mendel dabbed pollen from one to another, precisely pairing thousands of plants with certain traits over a stretch of about seven years. He meticulously documented how matching yellow peas and green peas, for instance, always yielded a yellow plant. Yet mating these yellow offspring together produced a generation where a quarter of the peas gleamed green again. Ratios like these led to Mendel’s coining of the terms dominant (the yellow color, in this case) and recessive for what we now call genes, and which Mendel referred to as “factors.”
He was ahead of his time. His studies received scant attention in their day, but decades later, when other scientists discovered and replicated Mendel’s experiments, they came to be regarded as a breakthrough.
“The genius in Mendel’s experiments was his way of formulating simple hypotheses that explain a few things very well, instead of tackling all the complexities of heredity at once,” says Gliboff. “His brilliance was in putting it all together into a project that he could actually do.”
- Get link
- X
- Other Apps
Comments
Post a Comment